skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lapidus, Saul_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study presents a new material, “HxCrS2” (denotes approximate composition) formed by proton‐exchange of NaCrS2which has a measured capacity of 728 mAh g−1with significant improvements to capacity retention, sustaining over 700 mAh g−1during cycling experiments. This is the highest reported capacity for a transition metal sulfide electrode and outperforms the most promising proposed sodium anodes to date. HxCrS2exhibits a biphasic structure featuring alternating crystalline and amorphous lamella on the scale of a few nanometers. This unique structural motif enables reversible access to Cr redox in the material resulting in higher capacities than seen in the parent structure which features only S redox. Pretreatment by proton‐exchange offers a route to materials such as HxCrS2which provide fast diffusion and high capacities for sodium‐ion batteries. 
    more » « less